HWY

Part A
(1) There are two outputs (0 and 1) So, two states, 0 and 1 should suffice. Hence, one $F^{\prime} F$ is needed.

We will connect the final output directly to the output of the FF. (In which case, no additional circuit is needed to convert the FF's output into the final output.)

The "next-state" table can be read off from the state diagram.

Input	Current state	Next State
W	Q^{*}	Q^{*}
0	0	1
0	1	1
1	0	0
1	1	0

The question specifies that we have to use D FF.

For $D F F, Q^{*}=D$.
From the next state table we observe that $Q^{*}=\bar{\omega} \leftarrow$ we want to express Q^{*} as a function of w, Q.
Therefore, the circuit that we want can be construct by putting $\bar{\omega}$ into the D input of the FF as shown below

Alternatively, in case that you are not sure whether you can simplify $Q^{*}=\bar{\omega}$ any further, you can use the K-map.

The K-map gives the same answer: $Q^{*}=\bar{W}$
(2) Note that in this question, the state diagram is exactly the same as in question (1).
The difference is that the outputs value are now 13 and 1 instead of

0 and 1

$$
Y_{3} Y_{2} Y_{1} Y_{0}
$$

where $\left.\begin{array}{rl}13 & =1101_{2} \\ 1 & =0001_{2}\end{array}\right\}$ The actual output

$$
1=0001_{2} \text { has } 4 \text { bits }
$$

Using what we have from question (1), we can transform our answer as followed:
we add one more box after the FF to convert the answer (Q) into the correct output value $\left(Y_{3} Y_{2} Y_{1} Y_{0}\right)$.

The truth table for this box is

Input	Output			
Q	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	1	1	0	1
1	0	0	0	1
	\Downarrow	\mathbb{L}	\Downarrow	$Y_{1}=0$

$$
Y_{3}=Y_{2}=\bar{Q}
$$

So, the connection inside the extra box is:

Putting this extra box after the circuit that we have from of uestion 1 gives:

Alternatively, you may redesign the circuit from the beginning.
In which case, you have the option of whether to map 13 and 1 to 0 and 1
as what we did earlier or

$$
\begin{aligned}
& \operatorname{map} \quad 13 \text { and } 1 \\
& 1 \text { and } 0 \text {. }
\end{aligned}
$$

Because we have already done the first mapping above, I want to show what you will get using the second mapping.
For the second mapping, the state diagram becomes

So, the next stare table is

W	Q	Q
0	0	0
0	1	0
1	0	1
1	1	1

Hence, $Q^{*}=w$. \& This is what we will connect to the D input of the FF.

The truth table for the extra box is:

$$
\begin{array}{ccccc}
Q & Y_{3} & Y_{2} & Y_{1} & Y_{0} \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
& \mathbb{K} & \mathbb{K} & \mathbb{V} & Y_{1}=1 \\
Y_{3}=Y_{2}=Q & Y_{1}=0 & Y_{0}=1
\end{array}
$$

our final answer is the following circuit

(3) For this question, there are four states in the state diagram. So, we need 2 bits to specify the states. Therefore, two FFs are needed.

The question specifies that the two frs should be one D FF and one sk FF. Moreover, we are required to have $Y_{0}=Q_{\text {JR }}$ output of the JK FF.
$Y_{1}=Q_{D}$ output of the D FF.
The state transition diagram (with state values substituted by binary values of the outputs is as followed

Note that nose ie no input

there is no input to this circuit.
So, the state $\Rightarrow\left\{\begin{array}{l}\text { moves to the next } \\ \text { state at every } \\ \text { rising edge of the } \\ \text { clock signal }\end{array}\right.$
The next-state table can be read off from the state diagram:

Note that we put	Current state Q_{D}	Next $Q_{J K}^{*}$	State Q_{D}^{*}	
$Q_{D K}$ before	0	0	0	1
$Q_{J K}$ became	0	1	1	1
Q_{D} connects	1	0	0	0
to Y which	1	1	1	0

is the MSB.
Now, we use the next-state table to find the excitation inputs of the FFs.
For $D F F$, this is easy. If we want Q_{D}^{*} on the next rising edge of the clock, we pot
Q_{D}^{*} as the input D of the $F F$.

Current state	Next Q_{D}State $Q_{J K}^{*}$				Excitation $Q_{J K}^{*}$	
0	0	0	1	J	0	1
0	\times					
0	1	1	1	1	x	0
1	0	0	0	0	0	\times
1	1	1	0	1	x	1

To fill out this part, we
This mean that if the JK FF is currently outputting 0 (ie. $Q=0$), if we want it to for J-k FF:

\cup	\ddots
0	1
1	0
1	1

This mean that if the JK FF is currently outputting 0 (ie. $Q=0$), if we want it to output 0 again $\left(Q^{*}=0\right)$ on the next clock cycle, we need to set the J and K inputs of the FF to be either

$$
\begin{aligned}
& J=0, k \neq 0 \\
& 0 \text { or } \\
& J=0, k=1
\end{aligned} \quad \text { (Hold mode) } \quad \text { (RESET mode). }
$$

because k can be both 0 or 1 as long as $J=0$, we write $J=0, k=X$ in the excitation table.
$1^{\text {st }}$ row of the
The table above can be interpreted as followed:
To have the state changed from 00 to 01 , we need to put $D=0, J=1, K=x$ into the $F F_{S}$.
we need to build one more circuit to control the D, J, K so that they agree with the above table. This means we have one more box inside our machine which output D, J, k as shown.

What should be the inputs) of this box?
Note that D, J, K are used to tell the FFs what should be the next state values. So,
the box that we are working on right now is the box that calculate the next state value
(For D FF, the D is directly the value of the next output.)

Recall that tie next state is determined by current state and input of the machine. In this question, there is no input. So, we determine the next state from the current state. Hence, the input to our box above is simply Q_{D} and $Q_{J K}$ (the current state values) as shown below:

Note that this is simply a box that turn Q_{D} and $Q_{J K}$ directly into D, J, K. So, it is simply a combinational logic circuit, (pre-midterm material)

The truth table of this box can be taken out directly from the table above.

Inputsof re box Outputs of the box.

Q_{D}	$Q_{J k}$	D	J	K
0	0	0	1	x
0	1	1	x	0
1	0	0	0	x
1	1	1	x	1

The k-maps show that $D=Q_{J K}$

The k-maps show that $D=Q_{J K}$

$$
\begin{aligned}
& J=\bar{Q}_{D} \\
& K=Q_{D}
\end{aligned}
$$

Therefore, our final answer is

